

Silicon High-Resistivity-Substrate Millimeter-Wave Technology

JOSEF BUECHLER, ERICH KASPER, PETER RUSSER, SENIOR MEMBER, IEEE,
AND KARL M. STROHM

Abstract — The application of molecular beam epitaxy (MBE) and X-ray lithography for the fabrication of monolithic integrated millimeter-wave devices on high-resistivity silicon has been investigated. Process compatibility and the retention of high-resistivity characteristics were measured using the spreading resistance method and Hall measurements after various process steps. Microstrip resonators of ring and linear geometry were fabricated on $10\ 000\ \Omega\cdot\text{cm}$ silicon substrates. For linear microstrip resonators, the attenuation was found to be less than $0.6\ \text{dB/cm}$ at 90 GHz. A 95-GHz IMPATT oscillator circuit and a planar microstrip antenna array have been fabricated on highly insulating silicon substrates. For the oscillator, a combined monolithic-hybrid integration technique was used to attach the discrete IMPATT diode to the resonator circuit. The oscillator does not require tuning elements. Preliminary experimental results are 8 mW of output power with 0.2 percent efficiency at 95 GHz.

I. INTRODUCTION

HIGHLY INSULATING SILICON is very promising as the substrate material for future applications in planar millimeter-wave circuits [1]. These circuits may be monolithic integrated as well as hybrid-monolithic integrated. The basic geometric structure for planar millimeter-wave circuits is the microstrip line. Fig. 1 shows the calculated attenuation coefficient dependence on the line width w for a microstrip line on a $7000\ \Omega\cdot\text{cm}$ silicon substrate material at 90 GHz with a constant w/h ratio of 0.8. The attenuation contributions of the substrate, of the conductor strip, and of the ground plane are specified. For frequencies above 40 GHz and a resistivity of the substrate material greater than $2000\ \Omega\cdot\text{cm}$, the dominant loss mechanism is the skin effect in the conductors. Therefore, the use of highly insulating silicon as the dielectric of planar circuits will not degrade the circuit performance. Of special interest is the frequency band from 90 GHz to 110 GHz, where the integration of complete transmitters or receivers, including antenna structures, is possible. The problems involving silicon are that it must be highly resistive and that this high resistivity should be preserved during various processing steps. During the first investigation on silicon for monolithic microwave integrated circuits, it was found that silicon undergoes resistivity changes during high-temperature processing steps and that the

Manuscript received May 10, 1986; revised August 4, 1986. This work was supported in part by the Ministry of Research and Technology of the Federal Republic of Germany.

J. Buechler and P. Rüsser are with the Lehrstuhl fuer Hochfrequenztechnik, Technische Universität Muenchen, Muenchen, West Germany.

E. Kasper and K. M. Strohm are with the AEG Research Center, Ulm, West Germany.

IEEE Log Number 8610822.

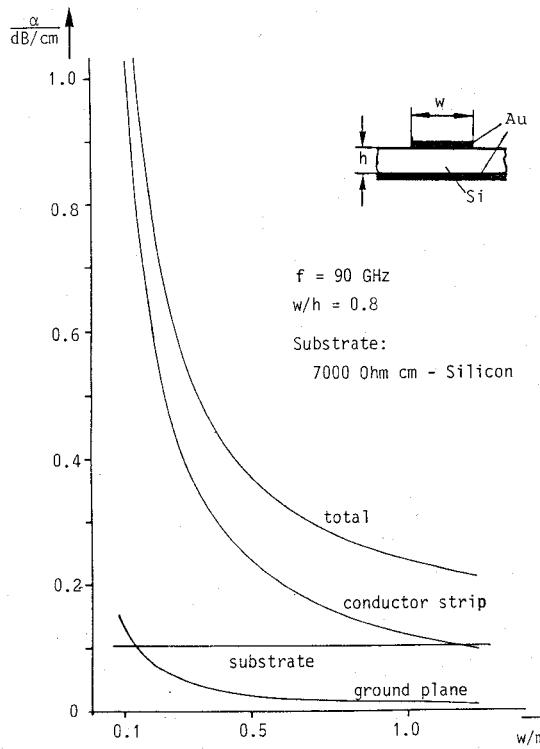


Fig. 1. Calculated attenuation coefficient of microstrip lines on silicon substrate.

attenuation for microstrip lines increased to intolerable values [2]. Generally, it was believed that the processing temperatures must not exceed 800°C . This was fulfilled by a group at RCA using ion implantation and laser annealing [3].

Modern techniques such as molecular beam epitaxy (MBE) for the growth of active, monocrystalline films with abrupt junctions at moderate temperatures ($550^\circ\text{--}750^\circ\text{C}$) [4] and X-ray lithography for lateral patterning of submicron lines [5] are promising technologies for the monolithic integration on high-resistivity silicon. To prove this, extensive investigations have been made concerning the behavior of high-resistivity silicon using these techniques. Also, extremely pure silicon was investigated after high-temperature processing steps (thermal oxidation at 1100°C) to verify the results of [2] and after various processing steps (wafer preparation, pyrolytic oxidation, wet chemical etching, plasma etching, deposition, and patterning of metal films) to show process compatibility.

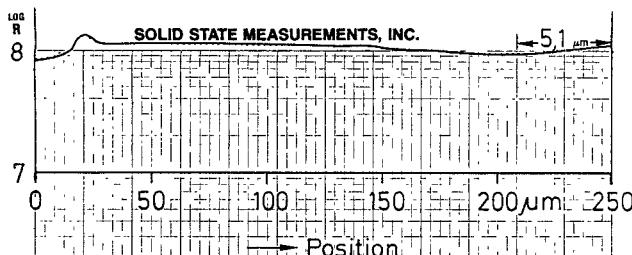


Fig. 2. Spreading resistance of a cleaned wafer versus the position of the probe tips on a 6.8° beveled sample.

II. BEHAVIOR OF HIGH-RESISTIVITY SILICON

The change in electrical characteristics was investigated with the spreading resistance method and Hall measurements. Spreading resistance (SR) is a known method for dopant profiling [6]. Because the SR probe senses the resistivity in a microscopic sampling volume immediately under the probe tip, one can angle lap a silicon structure and then probe down the beveled surface, obtaining a resistivity versus depth profile.

Investigations were made on 2-in silicon wafers purchased from Wacker Chemitronic with a specific resistance greater than $10\,000\,\Omega\cdot\text{cm}$. The following results have been obtained: the wafers may show surface state charges, but by proper wafer preparation these can be avoided. Fig. 2 shows the spreading resistance of a polished and cleaned wafer. The wafer was beveled by an angle of 6.84° and the spreading resistance was measured along the beveled surface for a distance of over $250\,\mu\text{m}$. This corresponds to a depth of more than $30\,\mu\text{m}$. The spreading resistance remains constant over the whole distance, with a value of about $10^8\,\Omega$. Hall measurements gave a specific resistance of greater than $10\,000\,\Omega\cdot\text{cm}$, a residual hole concentration of $1.6 \times 10^{12}\,\text{cm}^{-3}$, and a Hall mobility of about $380\,\text{cm}^2/\text{V}\cdot\text{s}$ at $300\,\text{K}$.

The epitaxial growth of active layers with the MBE method [4] at temperatures between 550°C and 750°C for about 120 min preceded by thermal cleaning process at 900°C for 5 min produced no change in the electrical characteristics of the high-resistivity silicon bulk material. To show the capability of MBE, a Ga dopant profile on a high-resistivity wafer is shown in Fig. 3. The Ga dopant layer was grown at 550°C . A constant doping level of $1 \times 10^{18}\,\text{cm}^{-3}$ is found in the MBE layer, and an abrupt junction to the high-resistivity silicon substrate is observed. The substrate doping is not influenced by the MBE process.

Performing a standard BN-diffusion process at 950°C , 20 min yielded the expected diffusion depth profile with preservation of the high quality of the inner bulk material.

The high-temperature thermal oxidation processes at 1100°C of Battershall and Emmons [2], in which resistivity changes from $1400\,\Omega\cdot\text{cm}$ p-type to $1\text{--}10\,\Omega\cdot\text{cm}$ n-type were observed, were repeated. SR showed that even after 6 h of thermal oxidation at 1100°C , the high resistivity of the bulk material is preserved. However, a lowering of the spreading resistance near the SiO_2/Si interface is observed (Fig. 4). This lowering may be caused by charges in the

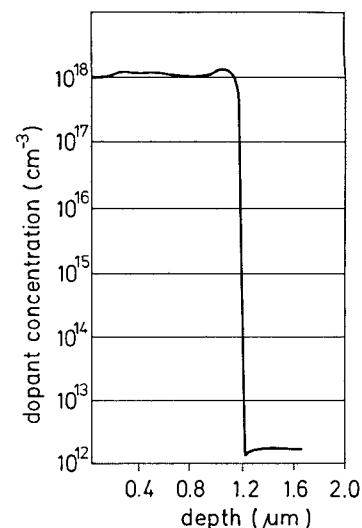


Fig. 3. Ga dopant profile on a high-resistivity silicon wafer grown by MBE at 550°C .

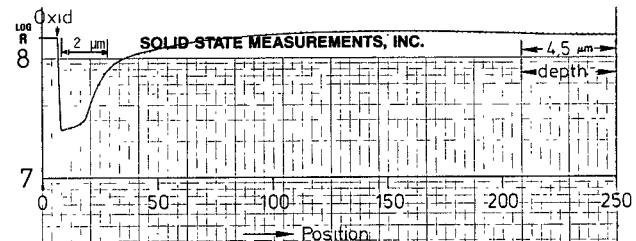


Fig. 4. Spreading resistance as a function of the position of the probe tips on a 6° beveled high-resistivity silicon sample after thermal oxidation at 1100°C for 6 h.

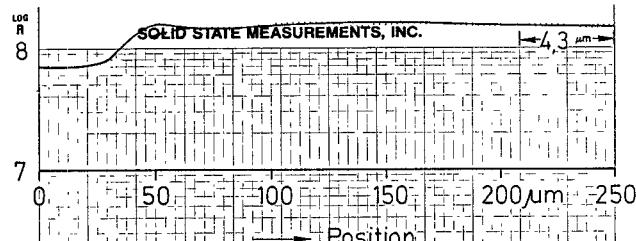


Fig. 5. Spreading resistance as a function of the position of the probe tips on a 5.8° beveled high-resistivity silicon sample after the fabrication process of microstrip ring resonators.

SiO_2/Si interface which induce a carrier accumulation under the SiO_2/Si interface.

Deposition of metal films, photolithographic patterning, plasma etching, and wet chemical etching show no effects on the high-resistivity silicon. This is shown in Fig. 5, where the spreading resistance measurement is given for a sample on which microstrip resonators were fabricated. During this fabrication process, cleaning procedures, evaporation of metal films, exposure with X-rays, Au-electroplating, and O_2 -plasma etching were performed. No difference is found to the spreading resistance curve of the cleaned wafer shown in Fig. 2.

X-ray lithography is a promising technique for the fabrication of future submicron devices [5]. To use this method for the production of millimeter-wave devices, one has to check whether the X-ray exposure influences the conduc-

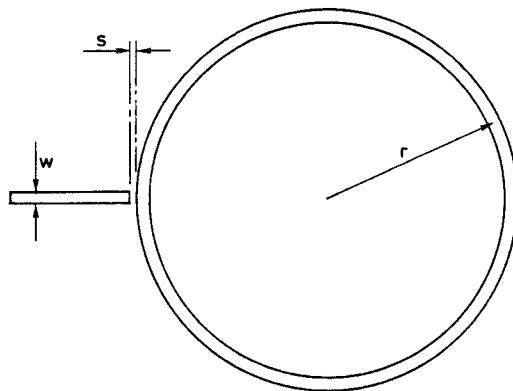


Fig. 6. Ring resonator structure.

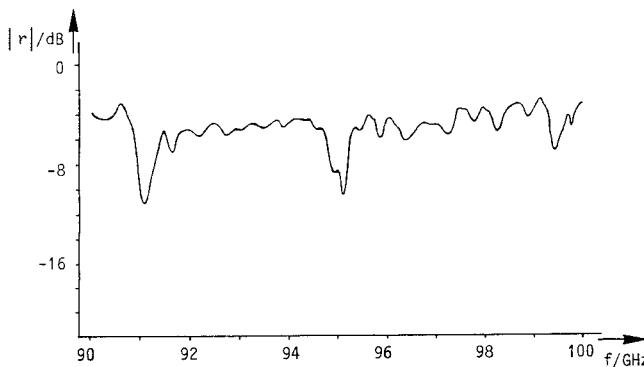


Fig. 7. Reflection coefficient frequency dependence of the ring resonator.

tivity of the exposed material. It could be shown that, even for an exposure of 100 J/cm^2 , which is 100 times the exposure with an insensitive resist (PMMA), no degradation of resistivity takes place. Hall measurements confirm these results.

III. FABRICATION OF RING RESONATORS AND LINEAR MICROSTRIP RESONATORS

Ring resonators and linear microstrip resonators were fabricated using the above-mentioned processes and measured in the frequency range between 90 and 100 GHz. Fig. 6 shows the investigated ring resonator structure. The line width w is $250 \mu\text{m}$, the gap width s is $10 \mu\text{m}$, and the mean radius r is 3.81 mm . The measured reflection coefficient frequency dependence is depicted in Fig. 7. From these results, we have calculated an $\epsilon_{\text{ref}} = 9.2$. This value coincides well with theoretical calculations based on Janssen's formulas [7]. For the attenuation measurements, linear stripline resonators of different lengths were used. Table I gives the data of the measured resonator samples. Fig. 8 shows the measured reflection coefficient frequency dependence of a 40-mm line with a $10\,000\,\Omega\cdot\text{cm}$ silicon substrate. From these results, we have calculated a line attenuation of 0.6 dB/cm , independent of whether X-ray or photolithography was used. On the other hand, microstrip lines on $650\,\Omega\cdot\text{cm}$ p-silicon substrate showed an attenuation of about 1.4 dB/cm , and lines with a $100\text{--}200\,\Omega\cdot\text{cm}$ substrate showed an attenuation of more than 2 dB/cm .

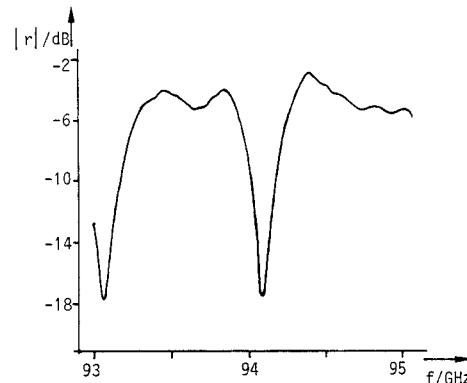


Fig. 8. Reflection coefficient frequency dependence of the linear resonator.

TABLE I
DATA OF THE LINEAR RESONATORS

Substrate	silicon
Substrate resistivity	$10\,000 \Omega\cdot\text{cm}$
Substrate thickness	$195 \mu\text{m}$
Conductor	gold
Conductor width	$190 \mu\text{m}$
Conductor thickness	$1.5 \mu\text{m}$

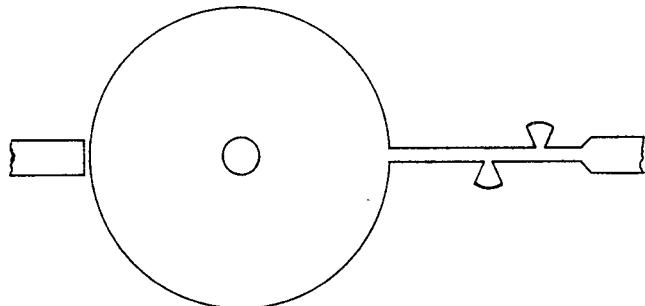


Fig. 9. Layout of the oscillator.

Also, various $10\,000\,\Omega\cdot\text{cm}$ silicon samples were investigated in a reduced height waveguide using a resonator method in the frequency range 75 to 110 GHz. The relative permittivity was found to be $11.68 (\pm 0.7 \text{ percent})$; the loss tangent was $1.3 \times 10^{-3} (\pm 30 \text{ percent})$ for unprocessed samples and 1.8×10^{-3} for a sample with an MBE layer of $0.1\,\mu\text{m}$ thickness and a doping concentration of $2 \times 10^{16} \text{ Sb/cm}^2$.

IV. THE INTEGRATED IMPATT OSCILLATOR

As the active elements for millimeter-wave generation, IMPATT diodes may be used [3], [8], [9]. For detection and mixing, Schottky diodes will be suitable. We have made preliminary experimental investigations on simple planar structures.

A 95-GHz oscillator has been integrated on a highly insulating silicon substrate. This millimeter-wave microstrip oscillator consists of a planar structure on a $195\,\mu\text{m}$ -thick, $10\,000\,\Omega\cdot\text{cm}$ silicon substrate and a discrete single-drift IMPATT diode as the active element. Fig. 9 shows the layout of the oscillator. The planar millimeter-wave circuit consists of a disk resonator, a transmission line

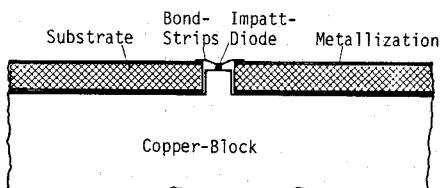


Fig. 10. Cross section through the disk resonator.

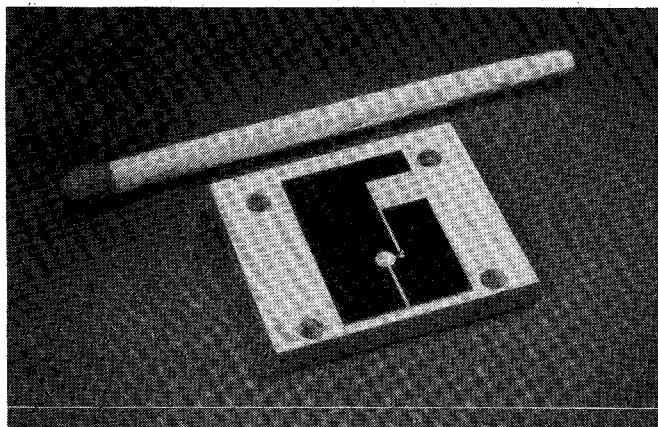


Fig. 11. Photography of the integrated oscillator.

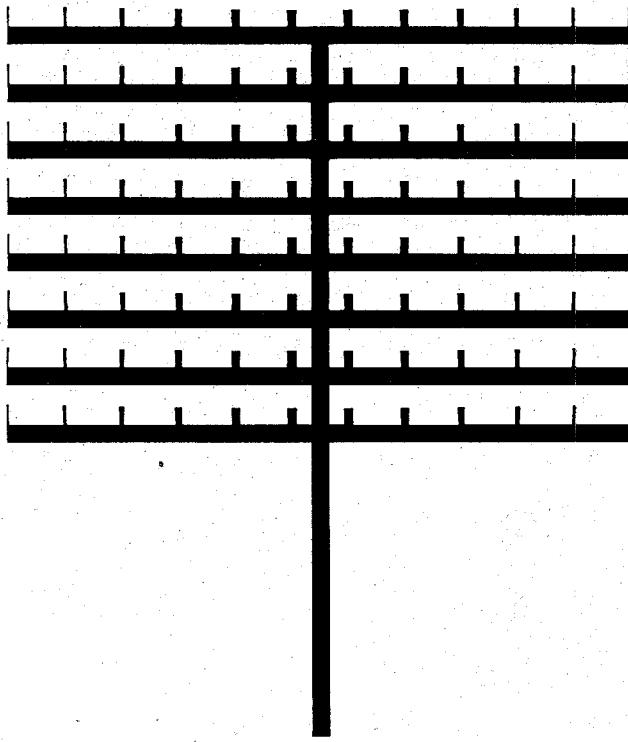


Fig. 12. Layout of the array antenna.

coupled via a gap to the disk resonator, and the dc bias network. The IMPATT diode is mounted in the center hole of the disk resonator and bonded to the resonator via four stripes. Fig. 10 shows the cross section through the disk resonator. The heat sink is a copper block with a mesa reaching into the hole of the planar circuit. Fig. 11 shows a photo of the integrated oscillator.

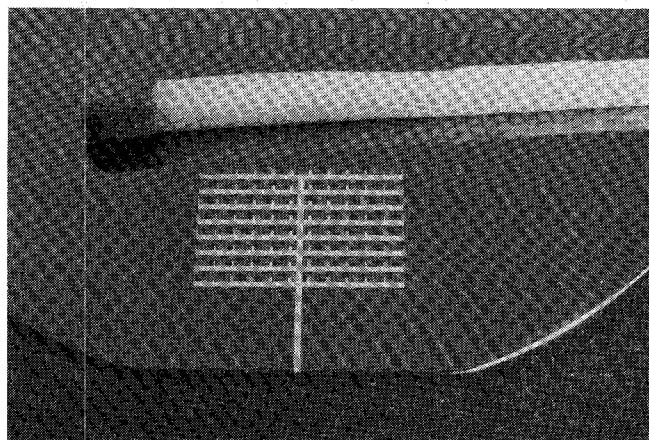


Fig. 13. Photography of the array antenna.

The oscillator needs no tuning elements. Preliminary experimental results are 8 mW of output power with 0.2 percent efficiency at 95-GHz oscillating frequency.

V. MONOLITHIC PLANAR STRIPLINE ARRAY ANTENNA

In the millimeter-wave region with small antenna dimensions, a considerable antenna gain may be achieved. At 95-GHz, for example, with 1-cm² antenna area, an antenna gain of up to 20 dB may be achieved. This makes the integration of planar stripline antenna structures interesting. Fig. 12 shows the layout and Fig. 13 the photography of a 96-element, two-dimensional microstrip array antenna. We have fabricated the array antenna on a 10 000- Ω ·cm silicon substrate with a thickness of 260 μ m. The antenna consists of eight lines with twelve $\lambda/2$ -antenna elements in each line. In the horizontal direction, a Dolph-Chebyshev design has been used in order to obtain low sidelobes [10]. The antenna dimensions are 8 mm \times 12 mm. Fig. 14 shows the measured *E*-plane pattern of the antenna at a frequency of 95.7 GHz.

The methods of modern silicon technology will open the way for the monolithic integration of the entire circuit, including the IMPATT diode. Fig. 15 shows the possible configuration of a monolithic integrated transmitter consisting of an oscillator and a stripline antenna on a 1 \times 1-in silicon chip.

VI. CONCLUSIONS

High-resistivity silicon can be processed using molecular beam epitaxy (MBE) and X-ray lithography without degradation of the high-resistivity characteristics. Even after high-temperature processing steps of long duration, the bulk material remains highly resistive. For microstrip lines, the attenuation was found to be less than 0.6 dB/cm at 90 GHz. The feasibility of this silicon planar technology for millimeter-wave circuits has been demonstrated by the fabrication of a hybrid-monolithic integrated 95-GHz oscillator and a planar microstrip antenna.

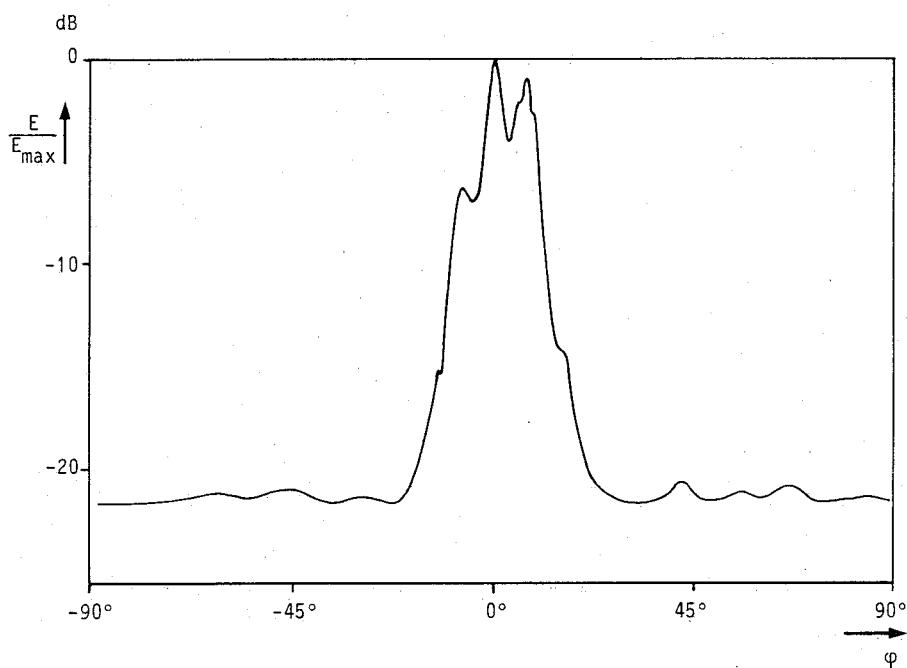
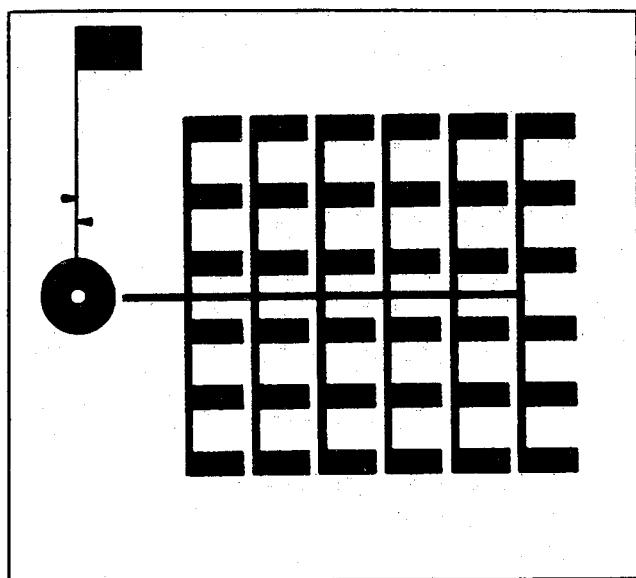


Fig. 14. *E*-plane radiation pattern of the array antenna.

Fig. 15. Monolithic integrated millimeter-wave transmitter.

ACKNOWLEDGMENT

The authors thank W. Behr, J. Luy, and Dr. G. Olbrich for valuable discussions and A. Muessigmann and A. Schaub for technical assistance.

REFERENCES

- [1] A. Rosen *et al.*, "Silicon as a millimeter-wave monolithically integrated substrate—A new look," *RCA Rev.*, vol. 42, pp. 633–660, Dec. 1981.
- [2] B. W. Battershall and S. D. Emmons, "Optimization of diode structures for monolithic integrated microwave circuits," *IEEE J. Solid-State Circuits*, vol. SC-3, pp. 107–112, June 1968.
- [3] P. J. Stabile and A. Rosen, "A silicon technology for millimeter-wave monolithic circuits," *RCA Rev.*, vol. 45, pp. 587–605, Dec. 1984.
- [4] E. Kasper and K. Wörner, "High speed integrated circuit using silicon molecular beam epitaxy (SI-MBE)," *J. Electrochem. Soc.*, vol. 132, no. 10, pp. 2481–2486, Oct. 1985.

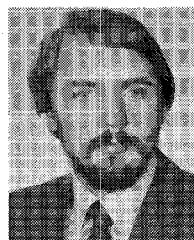
- [5] K. M. Strohm, J. Hersener, and H. J. Herzog, "Stress compensated Si-membrane masks for X-ray lithography with synchrotron radiation," in *Eurocon' 86 Proc.* (Paris), Apr. 21–23, 1986, paper AI.4.
- [6] R. Brennan, "Determination of diffusion characteristics using two- and four point probe measurements," *Solid State Technol.*, pp. 127–132, Dec. 1984.
- [7] R. H. Jansen and M. Kirschning, "Arguments and an accurate model for the power-current formulation of microstrip characteristic impedance," *Arch. Elek., Übertragung*, vol. 37, pp. 108–112, Mar. 1983.
- [8] B. S. Glance and M. V. Schneider, "Millimeter-wave microstrip oscillators," *IEEE Trans. Microwave Theory Tech.*, pp. 1281–1283, Dec. 1974.
- [9] G. B. Morgan, "Microstrip IMPATT-diode oscillator for 100 GHz," *Electron. Lett.*, vol. 17, no. 16, pp. 570–571, Aug. 1981.
- [10] W. L. Stutzman and G. A. Thiele, *Antenna Theory and Design*. New York: Wiley, 1981, pp. 537–542.

Josef Buechler was born in Pfaffenhofen, West Germany, in 1956. He received the Dipl. Ing. degree at the Technical University of Munich, West Germany, in 1984. Since then, he has worked as a Research Assistant at the Technical University of Munich, where he is engaged in the development of millimeter-wave integrated circuits.

Erich Kasper was born in Eisenerz, Austria, on March 6, 1943. He studied experimental physics at the University of Graz, Austria. His thesis was on the electrical properties of dislocations in silicon, and he obtained the Ph.D. degree in 1971.

He joined the AEG Research Center in Ulm, West Germany, in 1971, as scientist investigating semiconductor material with X-ray topography and electron microscopy. Later, he started the technique of molecular beam epitaxy for growth

of SiGe superlattices. Since 1980, he has been head of the microelectronic technology department within the Research Center. His main activities are submicron technologies (X-ray lithography for lateral structure, molecular beam epitaxy for vertical structure) and novel materials (heterostructures, superlattices).



Peter Russer (SM'81) was born in Vienna, Austria, in 1943. He received the Dipl. Ing. degree in 1967 and the Dr. Techn. degree in 1971, both in electrical engineering and both from the Vienna Technical University, Vienna, Austria.

From 1968 to 1971, he was an Assistant Professor at the Institute of Physical Electronics of the Vienna Technical University, where he carried out research work on the Josephson effect. In 1971, he joined the Research Institute of AEG-Telefunken, Ulm, Germany, where he worked on fiber-optic communication, high-speed solid-state electronic circuits, laser modulation, and fiber-optic gyroscopes. He was corecipient of the NTG-award (1979). Since January 1981, he has held the Chair of High Frequency Engineering

at the Technical University Munich, Germany. His current research interests are integrated millimeter-wave circuits, computer-aided circuit design, Josephson effect, and optical communications.

Prof. Russer is a member of the Austrian Physical Society (ÖPG), the German Physical Society (DPG), and the Nachrichtentechnische Gesellschaft (NTG), Germany.

Karl M. Strohm was born in Riedlingen/Donau, West Germany, in 1950. He received the Diplom and Ph.D. in physics from the University of Stuttgart, West Germany, in 1974 and 1978, respectively, for his investigations on color centers in isolating crystals.

He served as a Research Assistant at the University of Stuttgart until 1980, when he joined the Department of Physical-Technology at the AEG Research Center Ulm, West Germany. There he was engaged with yield statistics in the fabrication process of semiconductor devices with X-ray lithography. He is now project manager for the silicon millimeter-wave integrated-circuit (SIMMWIC) technology.